堆排序
参考:
https://baike.baidu.com/item/%E5%A0%86%E6%8E%92%E5%BA%8F/2840151
http://cuijiahua.com/blog/2018/01/algorithm_6.html
一、原理
堆排序(Heapsort)是指利用堆积树(堆)这种数据结构所设计的一种排序算法,它是选择排序的一种。可以利用数组的特点快速定位指定索引的元素。堆分为大根堆和小根堆,是完全二叉树。大根堆的要求是每个节点的值都不大于其父节点的值,即$A_{[PARENT_{[i]}]} >= A_{[i]}$。在数组的非降序排序中,需要使用的就是大根堆,因为根据大根堆的要求可知,最大的值一定在堆顶。
堆是一棵顺序存储的完全二叉树。
- 其中每个结点的关键字都不大于其孩子结点的关键字,这样的堆称为小根堆。
其中每个结点的关键字都不小于其孩子结点的关键字,这样的堆称为大根堆。
举例来说,对于n个元素的序列${R_{0}, R_{1}, … , R_{n}}$当且仅当满足下列关系之一时,称之为堆:$R_{i}<=R_{2i+1}$ 且 $R_{i}<=R_{2i+2}$ (小根堆)
- $R_{i}>=R_{2i+1}$ 且 $R_{i}>=R_{2i+2}$ (大根堆)
其中i=1,2,…,n/2向下取整;
二、步骤
设当前元素在数组中以R[i]表示,那么,
(1) 它的左孩子结点是:R[2*i+1];
(2) 它的右孩子结点是:R[2*i+2];
(3) 它的父结点是:R[(i-1)/2];
(4) R[i] <= R[2*i+1] 且 R[i] <= R[2i+2]。
首先,按堆的定义将数组R[0..n]调整为堆(这个过程称为创建初始堆),交换R[0]和R[n];
然后,将R[0..n-1]调整为堆,交换R[0]和R[n-1];
如此反复,直到交换了R[0]和R[1]为止。
以上思想可归纳为两个操作:
(1)根据初始数组去构造初始堆(构建一个完全二叉树,保证所有的父结点都比它的孩子结点数值大)。
(2)每次交换第一个和最后一个元素,输出最后一个元素(最大值),然后把剩下元素重新调整为大根堆。
当输出完最后一个元素后,这个数组已经是按照从小到大的顺序排列了。
三、算法实现
C语言
1 |
|